
Interactive
Fiction
Language

(IFL)

Team Introduction

Project Manager: John Liu
Language Guru: Matthew Suozzo
System Architect: Michael Yan

System Integrator: Qian Yu
System Tester: Heather Fisher

Interactive Fiction = ?

● Text Adventure

● Story-Driven

● Interactive

Goals of our IF Language

● Easily Create Interactive Fiction

● Minimal Programming Experience Needed

Our User

● Familiar with
programming
concepts

● Mostly a Game Designer
○ (instead of coder)

Goals of our IF Language

● Easily Create Interactive Fiction

● Minimal Programming Experience Needed

● Decouple Roles of Writer & Programmer
○ eg. Dialogue Trees

Language
Design

Matthew Suozzo

Buzzwords

What we Got

4 Object Types (TLTs)

Item Trait

SettingCharacter

What we Got

4 Primitive Types

String TF (bool)

DecimalInteger

Language Structure

● Program is list of defined types (TLTs)
ITEM Apple:
{block}:
{statements}

● PLAYER Character is like main method

STARTS : Constructor
ACTIONS : Actions available in game
FUNCTIONS : Functions available in the code
DIALOGUE : Defines Dialogue

Syntax / Statements
ADD item TO char
REMOVE item FROM char
SET val TO 3
PRINT str . "str"
MOVE char TO loc
EXECUTE func WITH arg1
INITIATE DIALOGUE AT #LABEL#
INCREASE val BY 3
DECREASE val BY 1
NUMBER OF item IN char
GOTO #LABEL#
USING "diag.txt"
EXIT

IF case1:
{statements}

ELSE IF case2:
{statements}

ELSE:
{statements}

ADD {STRING s="hello"}

Sample Code Snippet
CHARACTER maid:

“I am a maid of the house.”
START:

USES “Text.txt”
ADD apple TO SELF

ACTIONS:
“talk”

IF SELF HAS apple:
INITIATE DIALOGUE AT #LABEL A#

ELSE:
INITIATE DIALOGUE AT #LABEL D#

DIALOGUE:
#LABEL A#:

IF LAST_INPUT EQUALS “1”:
GOTO #LABEL B#

ELSE IF LAST_INPUT EQUALS “2”:
GOTO #LABEL C#

#LABEL B#:
IF LAST_INPUT EQUALS “1”:

REMOVE apple
ADD apple TO PLAYER
GOTO #LABEL C

ELSE IF LAST_INPUT EQUALS “2”:
EXIT

Sample Code Snippet
#LABEL A#
Maid: Hi, can I help you?
(1) Ask where you are
(2) Ask for an item

#LABEL B#
Maid: You are in the bedroom of a old house.
(1) Ask for an item
(2) Exit

#LABEL C#
The maid gives you an apple
(1) Ask where you are
(2) Exit

#LABEL D#
Maid: Hi, can I help you?
(1) Ask where you are

#LABEL E#
Maid: You are in the bedroom of a old house.
(1) Exit

DEMO!

Michael Yan

System
Architecture

Michael Yan

CHARACTER John:
START:

MOVE SELF TO IFL
ACTIONS:

"talk"
PRINT "Hello"

[
CHARACTER, John:
START:
MOVE SELF TO IFL
END_BLOCK
ACTIONS:
"talk"
PRINT
"Hello"
END_BLOCK

]

LexToken(CHARACTER,'CHARACTER',1,0)
LexToken(ID,'John',1,10)
LexToken(COLON,':',1,14)
LexToken(START,'START',2,16)
LexToken(COLON,':',2,21)
LexToken(MOVE,'MOVE',3,23)
LexToken(ID,'SELF',3,28)
LexToken(TO,'TO',3,33)
LexToken(ID,'IFL',3,36)
LexToken(END_BLOCK,'END_BLOCK',4,40)

[
CHARACTER, John:
START:
MOVE SELF TO IFL
END_BLOCK
ACTIONS:
"talk"
PRINT
"Hello"
END_BLOCK

]

('John',
 None,

('START',
('MOVE',

('OBJ', 'SELF'),
('OBJ','IFL')

),
('ACTIONS',

('talk',
('PRINT',

('Hello')
)

),
 None,
 None
)

def p_move(p):
'move : MOVE object_chain TO

 object_chain'

p[0] = (p[1], p[2], p[4])

Program
TLT (John)

start
Statement

(MOVE)
('OBJ', SELF)
('LOC', IFL)

actions
Action (talk)

Statement
PRINT ('Hello')

('John',
 None,

('START',
('MOVE',

('OBJ', 'SELF'),
('OBJ','IFL')

),
('ACTIONS',

('talk',
('PRINT',

('Hello')
)

),
 None,
 None
)

class John:
def __init__(self):

self.location = 'IFL'
def talk():

print 'Hello'

CHARACTER John:
START:

MOVE SELF TO IFL
ACTIONS:

"talk"
PRINT "Hello"

System
Integration

Qian Yu

How The Pieces Fit

compiler.
py

ifl_lex.py semantic_analyzer.pyifl_yacc.py generator.py

./ifl your_file.ifl

game/*

preprocessor.py

What's Actually Generated?

● a game/ directory

● a .py class file for each object type (Item,
Character, Trait, Setting)

● a main game file (game.py) that actually

runs the game

Execution Environment

● game.py
● instantiate and setup characters and

settings
● Enter into read-evaluate-print-loop (REPL)

○ Get User Command
○ Search for Command in Action List of Current

Setting
○ Call Appropriate Functions
○ Print Results
○ Update Availables Actions
○ Repeat

Development Environment

● Python Lex/Yacc (PLY)

● Git and Github for Version Control

● IDE/Debugger: PyCharm

● Terminal for Running and Testing

Testing

Heather Fisher

Testing Process

● Unit Test

● Test as we go

Test Suite

Sample Test Program

● Will this program work?

Results

● Missing
 ADD{INTEGER max = 100} TO SELF

Why Testing is Important

● Test early and test often!

● You never know what will break your code

Project
Management

John Liu

Project Process

● Waterfall Methodology to Agile Development

● Python & Java to Python Only

● Team Organization
○ Weekly Meetings, Google Hangout, Instant Messaging
○ Google Docs, Github

Lessons Learned

● Taking Advantage of Version Control (Git)

● Group Development vs Working Individually

● Communicate, Communicate, Communicate!

Possible Expansion

● Expand Character Encoding

● Support for Libraries

● Dialog Tree markup

● More Customization Options
○ Support for Multiplayer / Networking

The End

IFL: Do you have any questions?
(1) Yes
(2) No
>> _

