
BGD
--The Board Game Designer

Introduction

Xiao Huang - Project Manager
Ke Wu - Language Guru
Yinghui Huang - System Architect
Xingyu Wang - System Integrator
Dechuan Xu - System Tester

Introduction

● BGD is a simple language for designing board game applications
● How to use

○ Put your source code in our compiler folder
○ Run $sh compile.sh your_code.bgd
○ Run $sh run.sh
○ Enjoy

● Sample Game
○ Tic-Tac-Toe
○ YushenGame

Introduction
● Motivation

○ At very beginning, to be honest...
○ Then, we found it interesting to construct our owner language
○ Want to see our language coming to earth inspires us

● Properties
○ Specify common properties
○ Primitive calculation

Syntactic Constructs: Overview

piece_stmt

board_stmt

player_stmt

rule_stmt

function_stmt

input_stmt

Syntactic Constructs: Overview

State types and numbers of pieces

State size of the game board

State number of players

State what kinds of actions in your
game

State the restriction rules of the
actions

Syntactic Constructs: Overview

If you want to initialize the game
board with pieces, you can define
an initialize function.

Format:
type player position

Syntactic Constructs:
Primitive data type: int, double, boolean, string
Derived data type: array, pos
● pos: a data type for position on the board, consisting of two int value
● position := (1,1)

Key word: PIECE, PLAYER, BOARD, RULE, FUNCTION, YES, NO, NIL…
Statements:
● if-else statement, while statement, for-loop statement
● function-definition statement

We use indentation to identify a suite

Translator Architecture

Lexer: lexing.py
Parser: yaccing.py
ICG: traverse.py
Compile shell code: compile.sh

Running shell code: run.sh

Translator Architecture: Front End
tic-tac-toe.bgd Token Flow

Translator Architecture: Front End
tic-tac-toe.bgd Parser

Translator Architecture: Front End
tic-tac-toe.bgd AST

Translator Architecture: Front End
tic-tac-toe.bgd

GameDesigner.java

Translator Architecture: Back End

Runtime Environment

Java
Compiler

Compiler
Frontend

Source
Code

GameDesigner
.java

BytecodesJVM

compile.sh:

Software Development Environment

Compiler-Generator Tools

PLY (Python Lex-Yacc)
Python 2.7

● Lexer lexing.py
● Parser yaccing.py
● ICG traverse.py

Test Plan

● Mainly focused on frontend
● Based on Python unittest module
● Split into four parts:

○ lexer
○ yaccer
○ traverser
○ general tests

Test Plan: Lexer

1. Lexemes and token types

2. Indentation test
3. Sample code test

Test Plan: Yaccer

● Feed yaccer with test cases and inspect
result non-terminals manually.

Test Plan: Traverser

● Feed traverser with test
cases to generate ICG
(java code), and inspect
code manually.

Test Plan: General Tests

● PLY
○ illegal characters warning for Lex
○ Syntax error and SR conflicts warnings for Yacc
○ Parsing table generated

● Java
○ Eclipse compile-time debugging
○ GUI

PROJECT MANAGEMENT

● Start early
○ As early as Jan.28th
○ Detailed discussion followed

● Communicate often
○ Meet Every Tuesday

● Keep all files up to date

PROJECT MANAGEMENT

● Waterfall Model

PROJECT MANAGEMENT

Github Commits

Project
Begin

Spring
Break

Tutorial &
LRM

Before
Final

Final
Version

PROJECT MANAGEMENT
E

ve
ry

 D
ay

Time to Submit

Conclusion
● Lessons Learned

○ Plan ahead
○ Meet often
○ Divide work reasonably
○ Debug before commit is important!

Conclusion
● What Worked Well

○ Tuesday after developing…
○ Divide work/everyone

responsible for one part

Conclusion
● What If We Could Start Over

○ Setup grammar asap
○ Raise more language examples at first for test

Conclusion
● Why Use Our Language

○ Easy to use
■ 12 lines to implement Gomoku game

○ Fun to design your own game
■ YushenGame

○ Cross Platform
■ Java as target language

Demo

Demo For our Language:

Let’s have some fun!

Demo

Program 1: YushenGame
Program 2: Gomoku
Program 3: Init

We had fun in a team!

Q&A

THANKS!

