
multafila
“many threads”

Chae Jubb - Project Manager
Zeynep Toraman - Tester and Validator
Alessandra Poblador - Systems Integrator
Bo Yin - Systems Architect
Aiden Yang - Language Guru

Introduction
● a programming language that makes parallel

computing more accessible and efficient
● C-like in syntax
● designed to make writing multithreaded

programs easier than ever before

Introduction
multafila is:

○ simple and easy
■ clean and concise, avoids verbosity

○ robust and high-performance
■ eliminates error, compiles to C

○ flexible and versatile
■ adapts to personal programming style, complexity of

program
○ lightweight yet powerful

■ small language with building blocks that combine
○ portable

thread

thread thread_name;

spawn

thread t;

spawn (t) {

}

barrier

barrier;

pfor

thread thread_array[n];

pfor (thread_array, i, 0){

}

lock

lock (var1, var2, …) {

}

A threaded “Hello, world!”
int main () {

thread print1;

thread print2;

spawn(print1) {

printOut(“Hello, world!”);

}

spawn(print2) {

printOut(“Hello again!”);

}

barrier;

return 0;

}

spawn and barrier
in action

Lock it down

/* int x[10], y[10] */

int result;

int i;

threads threads[10];

pfor (threads, i, 0) {

lock(result) {

result = x[i] + y[i];

}

}

pfor and lock
in action

Multi-lock

never forget
a variable!

never miss a
deadlock!

pfor (threads, i, 0) {
lock(a, b) {

b = b + 1;
a = a + b;

}

lock(a, b) {
b = b + 1;
a = a + b;

}
}

l

● GitHub
● Trello
● Email

Project Management

Translator Architecture
l

Software environments
● vim, Sublime, TextWrangler
● valgrind, gdb
● GitHub

● Linux/OS X/Windows platform
● GCC version 4.2.1
● POSIX library
● flex version 2.5.35
● GNU Bison version 2.3
● GNU bash 3.2.48

Compiler generator tools
● flex for lexer
● bison for parser
● very easy to learn and essential to iterating

quickly on the language and adapting
grammar

● POSIX implementation for multithreaded
features

Testing
● testall.sh:
Shell script for running all test programs
● Test cases:
selected to cover trivial aspects of the language

Lessons learned
● Chae
● Alessandra
● Zeynep
● Aiden
● Bo

multafila is the future
● Parallel
● C-style Syntax
● Intuitive
● Easy

DEMO

How to Compile & Run
● To Compile
use the multafila BASH script:
./multafila <source_file> [<output_file>]
Sends the output of the translator directly into gcc

● To Run
Run the a.out (or <output_file>.out if specified)

