
Apollo
manager Reza Nayebi
architect Ben Kogan

language Javier Llaca
integrator Souren Papazian
validator Roberto Amorim

But you might know this…

λ x . (+1) x

…and maybe a bit of this…

♪♪♫

What happens if…

…we do this?

λ x . (♫) x

What is Apollo?

• Functional language for music creation

• Simple to use and understand

• Intended for musicians and non-musicians

What is Apollo?

• Functional language for music creation

• Simple to use and understand

• Intended for musicians and non-musicians

Let’s look at Apollo in action

Example

pitches: [Pitch] = [C4, E4, G4, C5, G4, E4, C4]

rhythm: [Duration] = uniform(\4, 7)

arpeggio: [Atom] = zip(pitches, rhythm)

main: Music = [arpeggio]

Data Types
• Int, Pitch, Duration

• Atom

• List

• Music

Data Types

note: Atom = (A4, \4)

chord: Atom = ([A4, C#5, E5], \4)

lead: [Atom] = [note, note]

back: [Atom] = [chord, chord]

song: Music = [lead, back]

Data Types

x: Int = 3

a: Pitch = A4 -- A in Octave 4 (69)

q: Duration = \4 -- Quarter Note (16)

aMajor: [Pitch] = [A4, C#4, E4]

Functions
square: (n: Int) -> Int = n * n

fac: (n: Int) -> Int =

case (n == 0)

1

 otherwise

n * fac(n - 1)

Functions

Higher-order

g: (f: (Int) -> Int, x: Int) -> Int = f(f(x))

Typed lambda expressions

\x: Int, y: Int -> Int = x + y

Example Revisited

pitches: [Pitch] = [C4, E4, G4, C5, G4, E4, C4]

rhythm: [Duration] = uniform(\4, 7)

arpeggio: [Atom] = zip(chord, rhythm)

main: Music = [arpeggio]

Example Revisited

main: Music = [zip(

[C4, E4, G4, C5, G4, E4, C4],

uniform(\4, 7))]

Interpreter Architecture

Extendable Architecture

Def

“fac” (Int) -> Int VLam

[“n”] If

CompOp

== Name

“n”

VInt

0

IntOp

Name

“n”

FnCall

Name

“fac”

List

IntOp

- Name

“n”

VInt

1

Def

“fac” (Int) -> Int VLam

[“n”] If

CompOp

== Name

“n”

VInt

0

IntOp

Name

“n”

FnCall

Name

“fac”

List

IntOp

- Name

“n”

VInt

1

“fac” (Int) -> Int

Def

“fac” (Int) -> Int VLam

[“n”] If

CompOp

== Name

“n”

VInt

0

IntOp

Name

“n”

FnCall

Name

“fac”

List

IntOp

- Name

“n”

VInt

1

“fac” (Int) -> Int

“n” Int

Def

“fac” (Int) -> Int VLam

[“n”] If

CompOp

== Name

“n”

VInt

0

IntOp

Name

“n”

FnCall

Name

“fac”

List

IntOp

- Int VInt

1

“fac” (Int) -> Int

“n” Int

Def

“fac” (Int) -> Int VLam

[“n”] If

CompOp

== Name

“n”

VInt

0

IntOp

Name

“n”

FnCall

Name

“fac”

List

IntOp

- Int Int

“fac” (Int) -> Int

“n” Int

Def

“fac” (Int) -> Int VLam

[“n”] If

CompOp

== Name

“n”

VInt

0

IntOp

Name

“n”

FnCall

Name

“fac”

List

Int

“fac” (Int) -> Int

“n” Int

Def

“fac” (Int) -> Int VLam

[“n”] If

CompOp

== Name

“n”

VInt

0

IntOp

Name

“n”

FnCall

(Int)

“fac” (Int) -> Int

“n” Int

(Int) -> Int

Def

“fac” (Int) -> Int VLam

[“n”]

“fac” (Int) -> Int

“n” Int

(Int)

“fac” (Int) -> Int

“fac” (Int) -> Int

“n” Int

✔

An interesting case

h@[]

An interesting case

case (!a)

 []

otherwise

 f(h@a) :: mapII(f, t@a)

Enabling recursion
• Initialize name before storing its value

• Closures:

 Def name _ (VLam p b)

 => (Function p b env')

• …and recursive closures!

Software Development
Environment
• UNIX

• GitHub

• Haskell

• Cabal

Runtime

• REPL

• Output MIDI

• Prelude

Prelude
concat: (a: [Int], b: [Int]) -> [Int] =

 case (!a)

 b

 otherwise

 h@a :: concat(t@a, b)

Prelude
filter: (f: (Int) -> Bool, a: [Int]) -> [Int] =

 case (!a)

 []

 case (f(h@a))

 h@a :: filter(f, t@a)

 otherwise

 filter(f, t@a)

Prelude
sort: (a: [Int]) -> [Int] =

 case (!a)

 []

 otherwise {

 concat(concat(sort(a), [p]), sort(b))

 where

 p: Int = h@a

 a: [Int] = filter(\x: Int -> Bool: x <= p, t@a)

 b: [Int] = filter(\x: Int -> Bool: x > p, t@a)

 }

Project Management

Project Management
• Weekly team meetings

• Git workflow: branch and pull request, wait for

validation from other team members before merging

• Travis CI and unit testing helped a lot to catch small

errors.

Project Management

• Project came together nicely at the end

• A lot of the hard work in the architecture that
allowed us to add all features easily

Git commit history

Testing & Validation

Testing and Validation
• 20+ code files for testing features, errors

• Bash script tests, validates, and `diff`s errors

• Test files all at once or line-by-line

• Travis Continuous Integration

