
1 

COMS W4115 
Programming Languages and Translators 
Lecture 24: Code Optimization 
April 22, 2015 
 
Lecture Outline 
 

1. Code optimization strategies 
2. Peephole optimization 
3. Common subexpression elimination 
4. Copy propagation 
5. Dead-code elimination 
6. Code motion 
7. Induction variables and reduction in strength 

 
1. Code Optimization Strategies 
 

• We can try to improve the performance of the target program by performing 
code-improving transformations within basic blocks. This approach is called local 
optimization. 

• A more thorough, more global job of code optimization can be done by looking at 
transformations across the basic blocks of a procedure, a task sometimes called 
intra-procedural optimization. 

• We can also look at inter-procedural optimization where we try to improve the 
performance of a program as a whole. 

• The general strategy for code optimization is to look for program transformations 
that give the most bang for the buck: they should be easy to implement, they 
should not take too much compilation time, and they should have high payoff. As 
with many tasks in compilation, code optimization is a study in tradeoffs. 

 
2. Peephole Optimization 
 

• One strategy for generating good code is to first use a naive code generation 
algorithm and then apply local improvements to the code by examining a sliding 
window of instructions, called the peephole, and replacing an instruction 
sequence within the peephole by shorter or faster sequence of code. Here are 
some typical peephole transformations: 

• Eliminating redundant loads and stores 
o In the instruction sequence 

LD R0, a 
ST a, R0 

the store instruction is redundant and can be eliminated. 
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• Eliminating unreachable code 
o In the instruction sequence 

L1: goto L2 
    x = y + z 
L2: a = b + c  

the second statement is unreachable and can be eliminated. 
 

• Eliminating unnecessary jumps 
o In the instruction sequence 

L1: if x < y goto L2 
    ... 
L2: goto L3  

the jump to a jump can be replaced by 
L1: if x < y goto L3 
    ... 
L2: goto L3  
 

• Algebraic simplification 
o Three-address statements such as  

x = x + 0 or x = x * 1 
where x is an integer can be eliminated entirely. 
 

• Reduction in strength 
o An expensive operation such as x2 can be replaced by a cheaper 

operation such as x * x. 
 

3. Common Subexpression Elimination 
 

• Local common subexpression elimination 
 

o In the following BEFORE basic block, the assignments to t7 and t10 
compute the subexpressions 4 * i and 4 * j, which have been eliminated in 
the AFTER block by local common subexpression elimination: 

 
  BEFORE      AFTER 
t6 = 4 * i   t6 = 4 * i 
x = a[t6]    x = a[t6] 
t7 = 4 * i 
t8 = 4 * j   t8 = 4 * j 
t9 = a[t8]   t9 = a[t8] 
a[t7] = t9               a[t6] = t9 
t10 = 4 * j 
a[t10] = x   a[t8] = x 
goto B2    goto B2 
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• Global common subexpression elimination 
 

o In the following flow graph, block B5 computes the common subexpressions 
4 * i and 4 * j, which are computed in blocks B2 and B3, respectively. 

 

 
 
o Notice that block B5 can be replaced by the following block since block B2 

has computed 4*i into t2 and a[t2] into t3:  
 

i = i + 1 
t2 = 4 * i 
t3 = a[t2] 
if t3 < v goto B2 

j = j - 1 
t4 = 4 * j 
t5 = a[t4] 
if t5 > v goto B3 

t6 = 4 * i 
x = a[t6] 
t8 = 4 * j 
t9 = a[t8] 
a[t6] = t9 
a[t8] = x 
goto B2 

if i >= j goto B6 

B2 

B3 

B4 

B5 
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x = t3 
t8 = 4 * j 
t9 = a[t8] 
a[t2] = t9 
a[t8] = x 
goto B2 

 
o This block can be replaced by following block by noticing that block B3 has 

computed 4*j into t4 and a[t4] into t5:  
 

x = t3 
t9 = a[t4] 
a[t2] = t9 
a[t4] = x 
goto B2 
 

o We now notice that block B3 has already computed a[t4] into t5 so we can 
replace the second and third statements by the assignment a[t2] = t5 to 
obtain the following optimized block: 

 
x = t3 
a[t2] = t5 
a[t4] = x 
goto B2 
 

   So far we have reduced the original nine-statement block B5 into a four- 
       statement block. 
 
 

4. Copy Propagation 
 

• A three-address statement of the form u = v is called a copy statement, or 
copy for short. 

• We can introduce copy statements to avoid recomputing common 
subexpressions: 

 

a = d + e b = d + e t = d + e 
a = t 

t = d + e 
b = t 

c = d + e 
c = t 
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5. Dead-Code Elimination 
 

• Statements that compute values that never get subsequently used can be 
eliminated. 

• Often copy propagation turns copy statements into dead code. 
• Consider the reduced basic block for B5: 

 
x = t3 
a[t2] = t5 
a[t4] = x 
goto B2 
 

After copy propagation this block becomes: 
 

x = t3 
a[t2] = t5 
a[t4] = t3 
goto B2 

 
We now observe x is never used so the first statement can be eliminated. The 
block now becomes 

 
a[t2] = t5 
a[t4] = x 
goto B2 

 
6. Code Motion 
 

• Loop-invariant computations are best moved outside loops. 
• Consider the while-statement: 

 
while (i <= limit – 2) 
 

Code motion will produce a faster equivalent loop when the limit computation is 
performed once before entering the loop: 

 
t = limit – 2 
while (i <= t) 

 
7. Induction Variables 
 

• A variable x is an induction variable if its value always changes by a constant 
whenever it is assigned a new value. 
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o For example, i and t2 are induction variables in block B2 of the flow graph 
in Section 3 above. 

 
• Reduction in strength and induction-variable elimination can be used to speed 

up loops.  See ALSU, Figs. 9.8 – 9.10, pp. 592-595 for an extended example. 
 
 
8. Practice Problems 
 
     1) ALSU, Exercise 9.1.1 (p. 596). 
      2) ALSU, Exercise 9.1.4 (p. 596). 
 
9. Reading 
 

• ALSU, Sections 8.5, 8.7, 9.1 
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