
1

COMS W4115
Programming Languages and Translators
Lecture 24: Code Optimization
April 22, 2015

Lecture Outline

1. Code optimization strategies
2. Peephole optimization
3. Common subexpression elimination
4. Copy propagation
5. Dead-code elimination
6. Code motion
7. Induction variables and reduction in strength

1. Code Optimization Strategies

• We can try to improve the performance of the target program by performing
code-improving transformations within basic blocks. This approach is called local
optimization.

• A more thorough, more global job of code optimization can be done by looking at
transformations across the basic blocks of a procedure, a task sometimes called
intra-procedural optimization.

• We can also look at inter-procedural optimization where we try to improve the
performance of a program as a whole.

• The general strategy for code optimization is to look for program transformations
that give the most bang for the buck: they should be easy to implement, they
should not take too much compilation time, and they should have high payoff. As
with many tasks in compilation, code optimization is a study in tradeoffs.

2. Peephole Optimization

• One strategy for generating good code is to first use a naive code generation
algorithm and then apply local improvements to the code by examining a sliding
window of instructions, called the peephole, and replacing an instruction
sequence within the peephole by shorter or faster sequence of code. Here are
some typical peephole transformations:

• Eliminating redundant loads and stores
o In the instruction sequence

LD R0, a
ST a, R0

the store instruction is redundant and can be eliminated.

2

• Eliminating unreachable code
o In the instruction sequence

L1: goto L2
 x = y + z
L2: a = b + c

the second statement is unreachable and can be eliminated.

• Eliminating unnecessary jumps
o In the instruction sequence

L1: if x < y goto L2
 ...
L2: goto L3

the jump to a jump can be replaced by
L1: if x < y goto L3
 ...
L2: goto L3

• Algebraic simplification
o Three-address statements such as

x = x + 0 or x = x * 1
where x is an integer can be eliminated entirely.

• Reduction in strength
o An expensive operation such as x2 can be replaced by a cheaper

operation such as x * x.

3. Common Subexpression Elimination

• Local common subexpression elimination

o In the following BEFORE basic block, the assignments to t7 and t10
compute the subexpressions 4 * i and 4 * j, which have been eliminated in
the AFTER block by local common subexpression elimination:

 BEFORE AFTER
t6 = 4 * i t6 = 4 * i
x = a[t6] x = a[t6]
t7 = 4 * i
t8 = 4 * j t8 = 4 * j
t9 = a[t8] t9 = a[t8]
a[t7] = t9 a[t6] = t9
t10 = 4 * j
a[t10] = x a[t8] = x
goto B2 goto B2

3

• Global common subexpression elimination

o In the following flow graph, block B5 computes the common subexpressions
4 * i and 4 * j, which are computed in blocks B2 and B3, respectively.

o Notice that block B5 can be replaced by the following block since block B2

has computed 4*i into t2 and a[t2] into t3:

i = i + 1
t2 = 4 * i
t3 = a[t2]
if t3 < v goto B2

j = j - 1
t4 = 4 * j
t5 = a[t4]
if t5 > v goto B3

t6 = 4 * i
x = a[t6]
t8 = 4 * j
t9 = a[t8]
a[t6] = t9
a[t8] = x
goto B2

if i >= j goto B6

B2

B3

B4

B5

4

x = t3
t8 = 4 * j
t9 = a[t8]
a[t2] = t9
a[t8] = x
goto B2

o This block can be replaced by following block by noticing that block B3 has

computed 4*j into t4 and a[t4] into t5:

x = t3
t9 = a[t4]
a[t2] = t9
a[t4] = x
goto B2

o We now notice that block B3 has already computed a[t4] into t5 so we can
replace the second and third statements by the assignment a[t2] = t5 to
obtain the following optimized block:

x = t3
a[t2] = t5
a[t4] = x
goto B2

 So far we have reduced the original nine-statement block B5 into a four-
 statement block.

4. Copy Propagation

• A three-address statement of the form u = v is called a copy statement, or
copy for short.

• We can introduce copy statements to avoid recomputing common
subexpressions:

a = d + e b = d + e t = d + e
a = t

t = d + e
b = t

c = d + e
c = t

5

5. Dead-Code Elimination

• Statements that compute values that never get subsequently used can be
eliminated.

• Often copy propagation turns copy statements into dead code.
• Consider the reduced basic block for B5:

x = t3
a[t2] = t5
a[t4] = x
goto B2

After copy propagation this block becomes:

x = t3
a[t2] = t5
a[t4] = t3
goto B2

We now observe x is never used so the first statement can be eliminated. The
block now becomes

a[t2] = t5
a[t4] = x
goto B2

6. Code Motion

• Loop-invariant computations are best moved outside loops.
• Consider the while-statement:

while (i <= limit – 2)

Code motion will produce a faster equivalent loop when the limit computation is
performed once before entering the loop:

t = limit – 2
while (i <= t)

7. Induction Variables

• A variable x is an induction variable if its value always changes by a constant
whenever it is assigned a new value.

6

o For example, i and t2 are induction variables in block B2 of the flow graph
in Section 3 above.

• Reduction in strength and induction-variable elimination can be used to speed

up loops. See ALSU, Figs. 9.8 – 9.10, pp. 592-595 for an extended example.

8. Practice Problems

 1) ALSU, Exercise 9.1.1 (p. 596).
 2) ALSU, Exercise 9.1.4 (p. 596).

9. Reading

• ALSU, Sections 8.5, 8.7, 9.1

aho@cs.columbia.edu

