Sample Midterm COMS W3261 CS Theory, Section 1 October 23, 2017; 75 minutes

Instructions

• Problems 1-5 are each worth 20 points. Problem 6 is extra credit (10 points) and optional. No aids permitted.

Problems

- 1. Consider the grammar G with the productions $S \rightarrow aSa \mid bSb \mid aa$.
 - (a) Describe in words the language L generated by this grammar.
 - (b) Using induction both ways, prove that L(G) = L.
- 2. Consider the grammar G in problem 1.
 - (a) Transform G into an equivalent Chomsky-Normal-Form grammar G'.
 - (b) Construct a Cocke-Younger-Kasami parsing table for G' and the sentence baab.
 - (c) Show how to reconstruct a parse tree for the sentence baab from the CYK table.
- 3. Using the pumping lemma for regular languages, prove that the language generated by the grammar in problem 1 is not regular.
- 4. Consider the regular expression $R = ab^*a$.
 - (a) Construct the McNaughton-Yamada-Thompson ϵ -NFA for R.
 - (b) Using the subset construction convert this ϵ -NFA into a DFA.
 - (c) Minimize the number of states in your DFA.
 - (d) Prove your DFA is minimum state.
- 5. Consider the language $L_1 L_2$, i.e., the difference of the two languages L_1 and L_2 .
 - (a) If L_1 is regular and L_2 is context free, must $L_1 L_2$ be regular? Briefly justify your answer.
 - (b) If L_1 is context free and L_2 is regular, must $L_1 L_2$ be context free? Briefly justify your answer.
- 6. Extra Credit, 10 points. Define $min(L) = \{w \mid w \text{ is in } L \text{ but no proper prefix of } w \text{ is in } L\}$. If L is a context-free language, is min(L) always context free? Informally prove your answer.